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Transverse Gradient Undulator ( TGU )

Reduce beam energy
jitter sensitivity
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O T. 1. Smith, et al, Reducing the sensitivity of a free-electron laser to electron
energy. Journal of Applied Physics, 50 (1979) 4580.

O N. Kroll, et al, Theory of the transverse gradient wiggler. IEEE Journal of
quantum Electronics, 17 (1981)1496.

O Z Huang, et al, Compact X-ray FEL from a Laser-Plasma Accelerator Using a
Transverse-Gradient Undulator. Physical Review Letter, 109 (2012) 204801.

O G. Fuchert, et al, A novel undulator concept for electron beams with a large
energy spread. Nucl. Instr. and Meth. A. 672 (2012) 33.
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TGU for FEL resonance compensation

O TGU with linear gradient of a

O Sort beam energy by dispersion 7
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Z. Huang, et al., PRL, 2012.
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Motivation & How the idea starts
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FIG. 2 (color online). Optimization of the transverse gradient

« of the modulator and the transverse dispersion 7 of the dogleg
- - - by 1D simulation, in order to find the optimal bunching factor of
Beam the 30th harmonic for the cooled HGHG.

H. Deng*, C. Feng, PRL (2013).
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Phase-merging: single-particle dynamics

0 We first derive the mechanism behind such kind of schemes from
single-particle dynamics. Practically for a given wavelength of the
seed laser, the resonant beam energy should be

Yr(6) = yo + anigts (v = ¥o). (1)

0 Consider a resonant and an arbitrary electron (y,", 8,) and (y’, 6,) at
the exit of the TGU modulator, which is the electron (y,, 8,) and (y, 6,-
A@) at the entrance of the modulator, respectively. Then,

{ Y6 = Yo — Aysinfy = y, — Ay, 2)
Y =y — Aysin(0y—A@/2) = y — Ay(6p—Ap/2),

O A is the phase exchange difference of the arbitrary electron with
respect to the resonant one.

Ap = 4N YY) (3)
Yo

and N represents the period number of the modulator.
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Phase-merging: single-particle dynamics

Combining Eq. (2) and Eq. (3), we can easily derive that

/ 2
Y —Yo 2nNAy anKg

=1- —1). 4
Y=o o gz D )

Eqg. (4) illustrates a scaling for longitudinal beam phase space control.

v" Typical HGHG setup: the local beam energy spread is amplified by a
factor of 2nNAy/y, which is usually a relatively small number.

v" Typical TGU region: when we increase the an product and make the
right hand of Eq. (4) to be unity, the electron beam energy spread is

not changed and almost every electron satisfies the FEL resonant
condition.

v Phase-merging: if one further increases an product properly, the right
hand of Eq. (4) can be zero. Although it seems that, the electron beam
energy spread is suppressed, in fact, all the electrons with the same
energy merges to an energy-related longitudinal phase.
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Phase-merging: single-particle dynamics

Some practical numbers:

Electron beam: E=0.84GeV, 100keV slice energy spread.
The modulator parameters: period length 80mmx12, and K=5.8.
265nm seed laser, energy modulation amplitude 500keV.

Phase-merging condition: an =24

15 : : : 15 : : : 3

05 0 05 1 19 05 0 05 1 3 05 0 05
éfn Bfn &fn

Standard-HGHG Phase-merging Phase-broadening
an=0 an =24 an = 24, more modulation
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SINAP

(a) Scheme |
Beam
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more flexible, smaller an & better performance

2. Phase-merging Enhanced Harmonic Generation

Phase-merging: Alternative scheme |

TGU modulator

Modulator
TGU
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C. Feng, H. Deng*, D. Wang, Z. Zhao, New J. Phys. 16 (2014) 043021
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Phase-merging: Alternative scheme Il
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C. Feng, T. Zhang, H. Deng, Z. Zhao*, Phys. Rev. ST-AB. 17 (2014) 070701



2. Phase-merging Enhanced Harmonic Generation
2RI Y S S ATI LTS L LT

SINAP Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Phase-merging Enhanced Harmonic Generation (PEHG)
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O 1D results: The maximum bunching scales as 0.67/n'/3
O 1D result: The maximum bunching is independent on the energy modulation
O A 3D theory and s2e simulation should be done.
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PEHG: Zero response to beam energy chirp

k q n+mkK(1+hB,) q k
= - PEHG = !
HGHG =T hp EEHG 1+hB T+ h(ID+B)
Lo [ : - 0.35 : : .
HEGHG — HGHG
1015 EEHG ] 03} —— EEHG |
PEHG ﬂ —— PEHG
= 1t 1 0ss |
g -
8 100 | *% o
% P — . E" .
% £ o1s}
S 09| 5
- a
§ 0wl 01}
0.985 | ] 0.05 |
0.98 | . g 0
_0.05 0 0.05 99 5.95 10 10.05 10.1

harmonic number

G. Wang, C. Feng, H. Deng, T. Zhang, D. Wang*, NIMA, 753 (2014) 56-60.
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PEHG: three-dimensional theory
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PEHG: SXFEL start2end results
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PEHG: SXFEL start2end results
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Two-stage PEHG to hard X-ray ?
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PEHG-assisted ultrafast pulse generation

According to beam density modulation theory, current & bunching factor distribution

during one seed wavelength can be expressed as
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K. Li, C. Feng, H. Deng, et al, 2017, in preparation.
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3. Advanced concepts

Coherent harmonic generation at storage ring

Main parameters

Beam energy: 600MeV
Energy spread: 0.6MeV
Emittance: 17.5nm-rad
Coupling: 3%

Seed laser: 800nm

Seed modulation: 1.2MeV
Radiation: 133nm

an=6.5

o & A N O N e o om@
. . T I T

-1 0.5 o 0.5 1 -1 05 0 05 1

Considering the small vertical emittance, each bunch
was proposed to be vertically dispersed only after it
undergoes sufficient damping. Then under an optimal
condition, the bunching factor of the 6™ harmonic is
enhanced to 23.0% by PEHG from 1.8% in OK setup.

More advanced schemes are proposed by C. Feng, et al., for EUV lithography
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TGU-assisted MBI suppression

RFGun LO TGU
C. Feng et al., New J.
I II I I'Ill Phys. 17, 073028 (2015).
X-band
RF Gun TGU1 BC TGU2 L2

D. Huang et al., Phys.
Rev. Accel. Beams 19,
100701 (2016).

3 IIIII

X-band Q

T. Liu et al., Phys. Reuv.
Accel. Beams 20,
082801 (2017).
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TGU-assisted MBI suppression
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TGU-enhanced transverse deflector
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TGU-enhanced transverse deflector
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4. TGU activities at SINAP
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TGU-60 modulator prototype (2013)
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TGU-20 radiator (2016)

Period length 20 mm
Segment length 1.5 m
Gap >7.00 mm
Peak field 0.615 T
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SINAP

4. TGU activities at SINAP

POP experiment of PEHG

Base line of
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O A POP experiment to demonstrate
PEHG was planned at SDUV-FEL.

O Itisover, but not finished.

O The 2" undulator lines of DCLS and
SXFEL are possible for a POP PEHG
operation, and is under consideration.

O It seems that PEHG on storage ring is
much more attractive.
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Conclusions

O Phase-merging in laser-beam interaction was proposed & studied.
Once the door was opened, alternative schemes can be used to
achieve the proposed phase-merging phenomenon.

O Phase-merging enhanced FEL is one of the most straightforward
applications in seeding business. The 3D analytical theory and s2e
simulations were performed, which demonstrates the feasibility of
fully coherent soft-x-ray FEL from the commercial laser using single-
stage PEHG technique (30" harmonic or even higher).

O Many advanced concepts of phase-exchange, i.e., transverse-
longitudinal coupling is being studied, i.e., ultra-fast pulse generation,
ring-based schemes, enhanced TDS and MBI suppression, etc.

O Several TGUs have been successfully manufactured at SINAP. Some
proof-of-principle experiments of PEHG is under consideration, with
the funding supports from NSFC and MOST of China.



Thanks for attention !




